Learning Statistics: Concepts and Applications in R
Regression Predictions, Confidence Intervals
S1 • E14
What do you do if your data doesn't follow linear model assumptions? Learn how to transform the data to eliminate increasing or decreasing variance (called heteroscedasticity), thereby satisfying the assumptions of normality, independence, and linearity. One of your test cases uses the R data set for miles per gallon versus weight in 1973-74 model automobiles.